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ABSTRACT 

SYNTHESIS AND PERFORMANCE ANALYSIS OF 

POLYURETHANE FOAM NANOCOMPOSITE FOR ARSENIC 

REMOVAL FROM DRINKING WATER 
 

by 

 

Faten Bakri Hussein 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Nidal H. Abu-Zahra 

 

Water contamination by various heavy metal pollutants such as, Lead, Arsenic, 

Cadmium, and Mercury, have severe toxic effects on living organisms and humans. High 

concentrations of arsenic in drinking water cause serious damage to the central and peripheral 

nervous systems, as well as, the dermal, cardiovascular, gastrointestinal, and respiratory systems. 

Arsenic contamination of ground water poses a substantial concern in many countries throughout 

the world, including the United States.  

 

Considerable research work, aimed at finding and developing various separation and 

treatment techniques, has been conducted over the past few decades. The conventional treatment 

methods of arsenic involve coagulation with ferric chloride or aluminum sulfate coagulants, 

followed by the separation of the produced insoluble products by settling, or by direct filtration 

through sand beds. Other treatment techniques for arsenic removal are reverse osmosis, ion 

exchange, lime softening, flotation, and adsorption on hydrated iron oxide or activated carbon. 

Solid phase Nano-adsorbents are becoming the core of most recent works in removing heavy 

metals due to their high capacity and affinity to heavy metal ions.  
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In this research work, a new bulk modified nanocomposite material (adsorbent) is 

developed for arsenic (As) removal from drinking water, in ppb concentrations. Iron oxide 

nanoparticles (IONPs) was impregnated in an open cell polyurethane (PU) foam in order to 

exploit the inherent advantages of porous PU foam structures and the ability of iron compounds 

to react with arsenic species by adsorption and ion exchange mechanisms, which offer higher 

removal capacities.  

 

The prepared adsorbents were characterized using several techniques. Scanning Electron 

Microscopy and Energy Dispersive X-ray (SEM/EDX) were utilized to examine the distribution 

of IONPs inside the foam matrix and the surface adsorption of arsenic species; respectively.  

Optical Microscopy was used to observe the cellular structure of the composite foams. Mercury 

Porosimetry technique was used to measure the porosity and density of the PU-IONPs 

nanocomposites. Atomic Absorption Spectrometer (AAS) was used to measure the removal 

capacity of the nanocomposite foams.  

 

To obtain the best removal capacity of arsenic species, several variables were 

investigated. Primarily, the composition ratio of polypropylene glycol (PPG) and toluene di-

isocyanate (TDI) in the PU foam, the percentage loading weight, the size of IONPs, and the foam 

shape were studied. Moreover, the effects of contact time, pH of solutions, the used weight of 

adsorbents, and the concentration of As solutions were examined. A long-term cyclic operation 

mode was applied to study the performance of the adsorbents in removing arsenic. 
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It was found that the composition ratio of PPG:TDI (1:2) with 12% IONPs yields the 

highest affinity towards arsenic species, compared to other possible combinations, with a 

removal capacity of 40% using single stage batch analysis. Experimental results revealed that 

decreasing the size of IONPs from 50-100 nm to 15-20 nm yields a higher removal capacity. In 

addition, granular adsorbents exhibit higher removal capacity compared to cubical shaped 

adsorbents in the order of 20% - 100%. The uptake of As increased with time and the highest 

removal capacity occurred at 24 hr. However, the rate of adsorption was rapid in the first 12 hr 

after which the rate slowed down as the equilibrium state was approached.  

 

The adsorption process of As is affected by the pH level of the contaminated solution. 

The removed amount of As was found to be higher in acidic solutions compared to the basic 

ones. The removed amount of As increased from 40 ppb to 60 ppb, when the weight of PU-

IONPs nanocomposite foam increased from 0.5 g to 2 g; respectively. As well as, the removal 

capacity of arsenic decreased as the As concentration increased in the solution. In column study, 

the adsorption of arsenic species was very rapid on the first few cycles with an approximately 

50% arsenic removal within 2 cycles. After that, a constant increase in the removal rate occurred. 

All arsenic species were removed in 22 cycles (approximately 9 days) of operating period. 

 

Sorption isotherms models were applied to determine the adsorption mechanisms and 

modeling parameters. The experimental data correlated well to Freundlich and Langmuir models 

with R2 0.953 and 0.949; respectively. Kinetic models were applied to determine the mechanisms 

which control the adsorption process. A pseudo-second-order model was found to be the best fit 

model for the adsorption data. 
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The proposed system of polyurethane nanocomposite foam offers a potential for the 

removal of arsenic with higher capacity at lower costs than conventional arsenic removal 

systems. In addition, the incorporation of the adsorbent particles in a foam media allows for 

easier post-treatment step. Multi-stage setup and applications can increase the removal capacity 

significantly.  
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CHAPTER 1 

INTRODUCTION 

Water pollution by many heavy metal pollutants like Arsenic have serious toxic effects 

on humans and living organisms. A significant research work, aimed at finding and developing 

various separation and treatment techniques, has been conducted over the past few decades. In 

my research work, a new bulk modified nanocomposite material (adsorbent) is developed for 

arsenic (As) removal from drinking water, in ppb concentrations.  

 

My thesis outline can be described in the following sequence: In chapter 1, five major 

sections are included to provide a comprehensive introduction to the research topic. Basic 

material from different aspects (chemistry, biology, and geology) is mentioned and related to 

arsenic. Important separation techniques such as, precipitation, adsorption, and ion exchange 

along with extensive literature review on arsenic removal are included. An overview is 

introduced about polyurethane foam and its chemistry. 

 

Chapter 2 presents the experimental work of my research work. The raw materials, 

experiment setup, synthesis and characterization of PU-IONPs are included. Moreover, 

schematic charts clarify the batch sorption experiments and the circulation mode of column 

study. In chapter 3, the outcomes of PU-IONPs characterization analysis besides the performance 

analysis, for different experimental conditions, are presented and discussed. Chapter 4 includes 

the major conclusions that can be drawn from the outcomes of this research work. 

 



www.manaraa.com

2 

  

1.1 Arsenic 

1.1.1 Arsenic Chemistry 

Arsenic element (As) is located in group 15 of the periodic table along with Nitrogen, 

Phosphorus, and Bismuth. The atomic mass of arsenic is ~75 amu and the atomic number is 33. 

Various isotopes of As were found and reported to be radioactive [1-3]; however, the only stable 

(nonradioactive) and naturally occurring isotopes of arsenic is arsenic-75, where each nucleus of 

the isotope contains 42 neutrons and 33 protons; i.e., a total mass number of 75. The isotope that 

has the longest half-life, 80.3 days, is arsenic-73 [2].  

 

The valence state and the coordination number (i.e., the number of surrounding atoms) 

affect the size of an arsenic atom, significantly. When valence electrons are removed from an 

atom, the radius of the atom decreases not only because of the removal of the electrons but also 

from the protons attracting the remaining electrons closer to the nucleus [4]. In addition, an 

increase in the coordination number will distort the electron cloud of an ion and change its ionic 

radius [5]. The valence states of arsenic are -3, 0, +3, and +5. In natural water, arsenic commonly 

occurs as +3 and +5. As(III) and As(V) bond with oxygen to form inorganic arsenite and 

arsenate; respectively.  

 

In reducing groundwater and hydrothermal water, As(III) typically occurs in many forms 

such as, H3AsO3, H2AsO3
−, and HAsO3

2−; whereas, in oxidizing groundwater and surface water 

As(V) is more common and typically occurs in forms like H3AsO4, H2AsO4
−, and HAsO4

2−. The 

factor which determines the possibility of having one formula over another is pH values. 
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The redox reaction of arsenic species is a significant factor in effective water treatment 

techniques. The oxidation of arsenic can be achieved by adding chemical oxidants; e.g., Fe(III), 

Mn(III,VI), Nitrate (NO3
−) or natural organic matter (NOM) [6-8]. The presence of poorly 

crystalline solid oxidants allows for further improvement toward the oxidation of As(III) to 

As(V), as a result of having high surface areas and if the reactions are catalyzed by light [9]. The 

oxidation reaction of As(III) to As(V) can be expressed through the following chemical reaction: 

2H3AsO3 + O2 →H2AsO4
− + HAsO4

2− + 3H+  (1.1) 

Oxygen in water treatment systems is slow to oxidize arsenic; therefore, chemical oxidants are 

needed to convert As(III) into more reactive As(V). 

 

The reduction of arsenic As(V) into As(III) occurs in natural subsurface where common 

reductants such as, hydrogen sulfide (H2S) and organic carbon are available. In general, As(V) 

converts faster into As(III) in reducing environments than As(III) transforms into As(V) under 

oxidizing conditions [9]. The main form of arsenic in toxic natural water is usually dissolved 

arsenic acid; which consists of H3AsO4 under very acidic conditions (pH < 2) and its associated 

anions (H2AsO4
−, HAsO4

2−, and/or AsO4
3−) in less acidic, neutral, and alkaline water [10]. Figure 

1.1 illustrates the distribution of arsenic acids at different pH values.  
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1.1.2 Arsenic Toxicity 

It is well known that arsenic, in forms of inorganic As(III) and As(V), is one of the most 

poisoning heavy metals found in water, soil, and air. For many centuries, arsenic has been used 

as an intentional human poison, nevertheless, it has been used as a medical agent; e.g., arsenic 

trioxide, which is also known as the white arsenic, which has been used more recently as an 

effective cancer chemotherapeutic agent [11]. Arsenic is also considered a carcinogenic element 

by the International Agency for Research on Cancer (IARC) and the US Environmental 

Protection Agency (USEPA) [12,13]. Bladder, skin, and lung cancer were confirmed from 

chronic arsenic exposure and the potential target organs for cancer from arsenic exposure are 

liver, kidney, and prostate [14]. 

 

 

 

Figure 1.1 Speciation of arsenic acid with pH [10]. 
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The ultimate exposure routes of arsenic can occur through inhalation, ingestion, and 

dermal contact. Inhalation may involve exposure to vapor, dust particles or mists, ingestion 

occurs through eating or drinking contaminated food or water by arsenic. The effective dose of 

arsenic received for each exposure route is dependent on the following factors [11]: 

 

a. The concentration of arsenic in the contaminated medium. 

b. The relevant volume-mass-area of the medium. 

c. The bioavailability, which is defined as a function of the chemical and/or physical 

form of arsenic in the relevant medium.  

d. The oxidation state of arsenic. 

 

The clinical signs of acute oral arsenic toxicity are progressive and depend on the 

valence, form, and dose of the arsenicals (e.g., arsine, arsenate, arsenite). It was found that the 

fatal range of inorganic arsenic is estimated at 1-3 mg As/kg [15]. In addition, death may occur 

within 24 hr to 4 days, based on the amount of consumed arsenic, due to the massive fluid loss 

which leads to dehydration, decreased blood volume, and circulatory collapse.  Table 1.1 lists the 

symptoms of acute and chronic arsenic poisoning [16,17].  
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Table 1.1 Acute and chronic effects of inorganic arsenic exposure. 

Organ System Acute Effects Chronic Effects 

Cardiac 
Cardiomyopathy, hemorrhage, 

electrocardiographic changes 

Hypertension, peripheral 

vascular disease, 

cardiomyopathy. 

Hematologic 
Hemoglobinuria, bone 

marrow depression 

Anemia, bone marrow 

hypoplasia. 

Gastrointestinal Nausea, vomiting, diarrhea 
Vomiting, diarrhea, weight 

loss. 

Hepatic Fatty infiltration 
Hepatomegaly, jaundice, 

cirrhosis, fibrosis, cancer. 

Neurologic 

Peripheral neuropathy, 

ascending weakness, tremor 

encephalopathy, coma 

Peripheral neuropathy, 

paresthesia, cognitive 

impairment. 

Pulmonary Edema, respiratory failure Cancer. 

Renal 
Tubular and glomerular 

damage, oliguria, uremia 
Nephritis, cancer. 

Skin Alopecia 
Hyperkeratosis, hypo‐ or 

hyperpigmentation, Mees’ 

lines, cancer. 

 

Commonly, both types of arsenic poisoning (acute and chronic), affect the same organs. 

However, the acute arsenic poisoning is being remedied by gastric lavage, hemodialysis, while, 

no treatment for chronic arsenic poisoning that is of benefit to the individual is found. Reducing 

exposure to the source of arsenic and providing supportive care to the patient is the best way in 

that case. 

 

1.1.3 Arsenic in Groundwater 

The concentration of arsenic in groundwater varies from much less than 1 µg/L up to 

10,000 µg/L, sometimes it could reach 100,000 µg/L in highly polluted environments [10]. The 

contamination level is variably defined to be greater than 10 µg/L or greater than 50 µg/L by 
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different agencies [18]. The foremost sources of arsenic in groundwater are geothermal fluids; 

anthropogenic sources (mining, industry, and pesticides); microbial mediated reductive 

dissolution of arsenic‐bearing iron host phases and of As(V) in reducing aquifers; and desorption 

of mineral‐bound arsenic in oxidizing aquifers.  

 

Higher levels of arsenic tend to be found more in ground water sources than in surface 

water sources (lakes and rivers) of drinking water [19]. In 2001, the United State Geological 

Survey (USGS) carried out an investigation. Figure 1.2, which represents the geological survey 

map of arsenic, was determined based on collected samples from 31,350 wells, in order to show 

where and to what extent arsenic occurs in ground water across the states.  It can be noticed that 

the western states have more water systems with arsenic levels greater than 10 µg/L. Parts of the 

Midwest and Texas have some systems whose current arsenic levels are greater than 10 µg/L.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Geological survey map of arsenic in groundwater of the US [20]. 
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Overall, knowledge of the extent of high arsenic groundwater concentration is increasing 

year‐on‐year; therefore, such distribution maps are likely to change significantly in the future as 

a result of changing the environmental conditions and the human activities. In the absence of 

comprehensive global data coverage, geostatistics‐based predictive tools are useful indicators of 

where such further hazards may exist [21,22]. 

 

1.2 Separation Techniques for Arsenic Removal 

The distribution and behavior of arsenic species have a significant role in water 

remediation. Current separation methods typically perform more effectively in removing 

arsenate, however, pre-oxidation can be used to convert arsenite to arsenate, as well as, 

adjustment of pH can improve the performance of arsenic removal systems. Arsenic removal 

technologies can be classified into the following categories [11]: 

 

a. Precipitative processes (e.g., coagulation/filtration, lime softening). 

b. Adsorptive processes; such, as activated alumina.  

c. Ion exchange process. 

d. Membrane processes (e.g., reverse osmosis (RO), electrodialysis reversal and 

filtration).  

e. Emerging technologies (e.g., granular ferric hydroxide, iron oxide‐coated sand). 

f. Biological treatment. 
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In addition to the above methods, blending of water is another efficient treatment option 

when arsenic concentrations are somewhat above the maximum contaminant level (MCL). In 

that case, raw water can be blended with water from another source with lower arsenic 

concentrations, or it can be blended with water that has been treated previously. Reducing the 

costs of chemical usage, extending the life of the treatment medium, and reducing the overall 

operating costs summarize the advantages of this method.  

 

1.2.1 Precipitative Processes  

The conventional precipitative processes for arsenic removal include: coagulation-

filtration, iron-manganese oxidation, and lime softening. In coagulation-filtration process, 

coagulants such as, ferric chloride, ferric sulfate, or aluminum sulfate, are usually added to the 

raw water to create a colloidal suspension, which is settled out by gravity or removed by 

auxiliary filtration system. Figure 1.3 shows a schematic diagram for this process. 

 

 

 

 

 

 

 

 

 

 
Figure 1.3 Coagulation-Filtration process. 
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Lime softening methods, where lime or sodium carbonate is added to water, can be used 

as a batch treatment to precipitate carbonates or to remove arsenic in large systems. The process 

efficiency is a function of pH and it can be increased by oxidation of As(III) to As(V). Large 

amounts of sludge are produced during lime softening, and disposal of the sludge is expensive. 

In almost all cases, construction of a lime softening plant for removing arsenic would not be 

practical unless the water also required removal of excessive hardness [23]. Besides that, Iron-

manganese oxidation method is also used for removing arsenic from groundwater, but it is noted 

that arsenic removal during manganese precipitation is less effective than with iron.  

 

1.2.2 Adsorptive and Ion Exchange Processes  

In this technique, arsenic removal is achieved by sorption of ions onto a chemically 

modified surface of solid adsorbents like activated alumina (Figure 1.4), which is produced by 

dehydration of aluminum hydroxide. Even though the removal process with activated alumina is 

considered to be an adsorption mechanism, the chemical reaction also involves ions exchange 

[24]. Regeneration solution such as, NaOH and acid neutralization, is required when the 

adsorptive capacity of activated alumina is exhausted, The optimum pH range for arsenic 

removal with activated alumina is from 5.5 to 6, and the pH should always be held below 8.2 

because activated alumina then has a net positive charge, which increases its effectiveness for 

removing anionic arsenic species [11]. 
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The efficiency of ion exchange, where ions on a solid phase are exchanged for ions in 

water, is affected by the water quality parameters; e.g., pH, alkalinity, competing ions, and 

arsenic concentration, in addition to the type of resin or solid phase. Factors which influence the 

suitability of ion exchange for a particular application are resin fouling, disposal of the 

regeneration solution, disposal of bed resin, and other design considerations [26].  

 

1.2.3 Membrane Processes  

Arsenic removal by membrane processes had been applied as separation techniques in 

many studies. These membranes act as selective barriers toward the contaminants. The driving 

forces in membrane process can be pressure, concentration, electrical potential, and temperature 

gradient. For arsenic removal, the membrane processes consist of reverse osmosis (RO) and 

electrodialysis reversal. In RO, a pressure gradient is created across the membrane that exceeds 

the osmotic pressure of the treated water. The performance of RO is hindered by iron, silica, 

Figure 1.4 Activated Alumina [25]. 
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manganese, and turbidity. Also, it is strongly influenced by the type of membrane and operating 

conditions. RO is more effective in removing As(V) than As(III) [23]. 

 

In electrodialysis reversal (EDR), ions are transferred through selectively permeable 

membranes influenced by direct current electrical force. By this process, ions can be forced to 

migrate toward a solution of greater concentration. As illustrated in Figure 1.5, Membranes in 

the electrodialysis reversal process are placed in an array between opposing electrodes, with 

alternating cation and anion exchange membranes.  

 

 

 

 

 

 

 

 

 

 

 

The migration of cations or anions is governed by the direction of the negative or positive 

electrodes, in which periodic reversal of the electrodes is used to minimize the potential for 

fouling of electrodes [23]. 

 

Figure 1.5 Electrodialysis reversal system [27]. 
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1.2.4 Emerging Technologies 

The term emerging technologies includes the most innovative methods of arsenic 

removal. Those include, but not exclusive to, granular ferric hydroxide, iron oxide‐coated sand, 

titanium dioxide, photooxidation, and limestone‐based material. Many studies were conducted to 

evaluate the capability and efficiency of such materials in removing arsenic. 

 

Adsorption of arsenic on granular ferric hydroxide is a technique that proved to be 

efficient for the treatment of contaminated water. A treatment capacity of 30,000-40,000 bed 

volumes was reported, with effluent concentrations less than 10 µg/L [28]. With granular ferric 

hydroxide, however, adsorption of arsenic decreases as pH increases, and competition from 

phosphate can impede arsenic removal. The cost of granular ferric hydroxide can be quite high, 

and regeneration of the material may not be practical [23]. Iron oxide‐coated sand was also 

utilized in a fixed bed reactor for the removal of heavy metals, as well as arsenic. It provided 

promising results. However, after exhaustion, the reactor bed must be regenerated by rinsing 

with a regeneration solution, flushing with water, and neutralization with a strong acid. Likewise, 

Iron oxide minerals have been used for arsenic removal from water [29]. 

 

A relatively new technique for arsenic removal, which is also accomplished by 

adsorption of dissolved arsenate, exploited titanium dioxide. The removal efficiency can be 

improved by photocatalytic oxidation of As(III) to As(V) before treatment with titanium dioxide 

[30]. Meanwhile, potential drawbacks in its use are the necessity for backwashing and the 

disposal of backwash water. Titanium dioxide has been used for arsenic removal in municipal 

supplies in Arizona [11].  
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Photooxidation process mainly involves the oxidation of As(III) to As(V). In the presence 

of light and naturally occurring materials that absorb light, this process can be greatly 

accelerated. After oxidation, the As(V) can be removed by co-precipitation. The photochemical 

process of oxidation can be achieved with ultraviolet lamp reactors or by sunlight‐assisted 

photooxidation. Testing has shown substantial reduction of arsenic levels, even in the presence 

of high levels of dissolved ferrous iron content, compared to arsenic content, since dissolved 

Fe(II) would require additional chemical oxidant in an oxidation system [23]. 

 

Biological treatment of water refers to the use of living organisms or biological materials. 

Living organisms such as, plants, fungi, or bacteria, were used to treat water contaminants, as 

well as, biological materials; e.g.,  bones, biomass, hair, seeds, leaves, or wood were also utilized 

to sorb and treat contaminants. In many research work [31-34], crop wastes, fungal biomass, 

algae, and chitosan were chosen to investigate their potential in arsenic removal from water. 

Living bacteria, fungi and plants may also treat arsenic in surface water, groundwater, soils, 

sediments, and wastewater [35,36].  

 

For arsenic, bioremediation includes the use of organisms or biological materials to 

change redox, pH, or other ambient conditions so that arsenic is less mobile in the environment. 

Biological treatment with fungi and bacteria must be carefully managed to avoid substantially 

methylating inorganic arsenic into highly toxic methylarsine gasses [10]. 
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1.3 Polyurethane Foam: An Overview 

Polyurethane foams were early developed in the 1930s and started to grow since they 

have been used in numerous extensive, as well as intensive applications, after World War II [37]. 

The main characteristic of polyurethane foams revolves in its capability to deliver a wide range 

of cell structures, densities, rigidity and foam morphologies. Polyurethane foams are excessively 

predictable in performance and known for their strength, durability and surface feel.  

 

The main classification of polyurethane foams is Rigid, Flexible, and Semi-rigid/Flexible 

Foams. Rigid polyurethane foams have high insulation ability along with its rigidity; therefore, 

they are essentially used in automotive, construction, recreation and appliance applications. On 

the other hand, flexible polyurethane foams reveal excellent elastic and deformation-recovery 

characteristics since they are made with a shorter polyol and less functional groups. Flexible 

polyurethane foams are suitable for packaging, furniture and flexible hoses. 

 

In term of economics, polyurethane foams market occupies a massive sector as a result of 

using polyurethane foam in a wide range of industrial processes. For example, the spray 

polyurethane foam (SPF) industry was projected to grow at 13% per year from about $800 

million in 2013 to $1.1 billion in 2015. Growth will surpass overall construction industry 

expansion based on increased penetration of SPF in key residential and commercial applications. 

However, the industry does face some challenges, including concerns over improper 

installations. Within residential construction, walls and foundations are projected to be the 

fastest-growing application. In commercial construction, roofing will remain the largest 

application but exterior walls will be the fastest growing application at 23% annually [38]. 
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The global polyurethane market is classified into rigid foam, flexible foam, coatings, 

adhesives, sealants, and elastomers. Flexible polyurethane foam is widely used in upholstery, 

automotive seating, and bedding. Increasing disposable income and changing lifestyle in 

emerging economies such as, Brazil, China, and India have led to the growth of furniture 

industry. This, in turn, is expected to drive the polyurethane market growth. Rigid foams are also 

used for thermal insulation in construction and refrigeration.  

 

Increasing infrastructure spending in Brazil, China and India, UAE, Saudi Arabia and 

Qatar are expected to fuel the demand for rigid polyurethane foam. Growing demand for 

electronic appliances like refrigerators is another factor contributing to the market growth. 

Polyurethane varnishes are used for hardwood floors due to its abrasion resistance and durability. 

Increasing the use of polyurethane-based paints to provide wood floor finishes is expected to fuel 

its demand in paints & coatings industry. Figure 1.6 reveals the global polyurethane market 

estimates and forecast, by product, 2012-2020, (Kilo Tons) [39].  

 

 

 

 

 

 

 

 

 

Figure 1.6 Global polyurethane market estimates and forecast, by product, 2012-2020, 

(Kilo Tons). 
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Flexible polyurethane foams are composite structures that are characterized by a set of 

physical properties such as, density, compressive modulus, and resiliency. The ultimate usage of 

flexible polyurethane foam in applications, for instance, packaging, cushioning, and seating, 

needs to control the elastomeric character of these foams. Flexible polyurethane foams are made 

by the controlled entrapment of an expanding gas during the polymerization that forms urethane 

linkages between polyfunctional alcohols and polyisocyanates. In practice, the polyfunctional 

alcohol, or polyol, has a hydroxyl functionality of three or more, and the polyisocyanate is 

generally a diisocyanate, or a polyisocyanate with a functionality of two to three, so the 

polyurethane forms a cross-linked network (i.e., a thermoset elastomers) [37].  

 

The cell structure, whether it is opened or closed, is another variable that must be 

considered. During the generation of foams the gas is contained in cells that grow and expand the 

foam and at the completion of the expansion of the foam, the gas cells may remain closed, or 

they may open into a largely reticulated structure. If the cells remain closed, a closed-cell foam 

will be generated and the compressive modulus of the foam will depend on the elasticity of the 

polyurethane wall of the enclosed gas cell and the pneumatic properties of the assemblage of 

small microcells constituting the foam. Closed-cell foams are useful in fabric insulation, as 

interlayer, and in sports equipment like thin camping mattresses where the sponge effect of an 

open-cell foam in contact with ground moisture would be undesirable. However, most of the 

flexible foams are designed to be of an open-cell structure [37]. 
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Sequences of three main chemical reactions are involved in polyurethane foam formation. 

Firstly, isocyanate reacts with hydroxyl to form urethane, then the reaction of isocyanate with 

water, involving a transit carbamic acid, to generate carbon dioxide and an amine. Finally, the 

reaction of amine with isocyanate to form a urea linkage.  

 

1.  

  

 

   Isocyanate      Hydroxyl        Urethane 

 

2.   

 

  Isocyanate       Water     Carbamic acid   Amine 

 

3. 

 

    Isocyanate         Amine           Urea  

 

The complexity arises from the close control or balance that is needed of the order in which the 

specific reactions occurs during a comparatively fast series of reactions [40]. This balance is 

achieved by the selection of catalysts and polyol reactivity [41].  
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The carbon dioxide, which results from the reaction, diffuses to nucleation sites at which 

the gas cells start to grow by an accumulation of liberated carbon dioxide and by thermal 

expansion. The nucleation sites are considered to be small air bubbles entrained in the liquid 

mixture during the mixing of the components and stabilized by surfactant [42]. The number of 

these sites are assumed to be constant throughout the formation process which leads to a stable 

foam, as well as, it is controlled by the mixing mode and by the surfactant.  

 

As the reaction proceeds, the liquid phase drains into struts and interstices as the walls 

between the gas cells are thin. To keep the foam stable during these essential chemical and 

physical processes, a carefully selected surfactant is used. The predominant reactions in the 

earliest stages of the foaming process are the reactions to form ureas and polyureas by chain 

extension in linear segments. At this stage, the foam formation is occurring but the polymer 

molecular weight and the viscosity of foaming system stay proportionally low. 
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1.4 Literature Review: Arsenic Removal from Water  

Mahanta et al. [43] investigated arsenic removal from water by introducing Nanofibrous 

membranes. Poly Vinyl Alcohol (PVA) and Ferrous ions (Fe3+) were cross-linked using 

electrospinning technique. The designed PVA/Fe nanofibers were used in different 

concentrations of As(III) and As(V) solutions under constant speed and room temperature. The 

effects of pH and coexisting anions like silicate ions were studied. 

 

The removal capacity of arsenic ions from water, which was the core purpose of this 

study, was found to be 67 mg/g for As(III) and 36 mg/g for As(V) as illustrated in Figure 1.7. 

The reported values are the maximum adsorption within 30 min for all tested concentration 

ranges. Moreover, it was observed that silicate anions reduced the extraction capacity. 

 

 

Figure 1.7 Concentration dependent adsorption kinetics of As(III) and As(V) ions using Fe3+ ion 

incorporated PVA Fe nanofibers (10 mg, pH = 7) as a function of time [43]. 



www.manaraa.com

21 

  

Nguyen et al. [44-46] conducted various research work on arsenic removal from drinking 

water. Iron Oxide Coated Sponge (IOCSp) was introduced as a new adsorbent material. 

Evaluation of the capacity and efficiency of IOCSp in removing As(III) and As(V), as well as, a 

long-term performance and mathematical models were studied. Exclusive research for Nguyen et 

al. was made on As removal using iron ore mining waste [47]. In this work, a purified and 

enriched waste material (Treated Magnetite Waste, TMW) from iron ore mine was tested for its 

ability to remove arsenic. It was found that this material has an ability to remove more than 90% 

of arsenic and could be a cost-effective new material. 

 

In 2006, Nguyen et al. [44] developed a new filtration media made of IOCSp. It 

demonstrated a high capacity of removing both As forms. One gram of IOCSp absorbed 160 µg 

of As upon 9 hr. Packed column of 8 g of IOCSp decreased the arsenic content in solution from 

156 µg/L to less than 50 µg/L. the optimal coating conditions of commercial polyurethane 

sponge with iron oxide were investigated under different operation variables (e.g., pH, the 

contact time between IO and the sponge, coating temperature, and the time of drying of sponge 

after coating).  

 

The outcomes of this study listed as uncoated sponge had up to 10% removal efficiency 

of As from a solution with 530 µg/L after 24 contact hr. In a batch study, 8 g of IOCSp could 

treat 63-75 L of ground water and decreased the initial concentration of As from 56-156 µg/L to 

less than 18-50 µg/L. In a column study, 10 g of IOCSp were able to treat 50 L of synthetic 

water with an initial concentration of As 260 µg/L to less than 50 µg/L. 
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In their second research work, Nguyen et al. [45] introduced a safety process to treat the 

exhausted IOCSp by Solidification/Stabilization with cement and fly Ash in the leachate. The 

experiment was performed using IOCSp containing 12% of IO. A packed bucket (200 mm in 

diameter and 350 mm in height) with 180 g of IOCSp was operated at normal pH = 6.5-7.3 and 

filtration velocity of 50 ml/min.  

 

The results of this pilot study showed that the As concentration was reduced from 480 

µg/L in 1.5 m3 of contaminated natural water to below 40 µg/L. Meanwhile, a batch equilibrium 

studies were conducted at pH = 7 and synthetic water with As concentration of 5 mg/L at room 

temperature with different amounts of adsorbent (0.018 g to 1.296 g). The chosen contact time 

was 20 hr and 130 rpm for shaking the samples, the results are illustrated in Figure 1.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Prediction of equilibrium adsorption of As by different adsorption models 

(contact time = 20 hours, mixing rate = 130 rpm, temperature = 22 °C) [45]. 
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Nguyen et al. carried out long-term experiments in their third research work [46]. Two 

glass columns of 45 mm diameter and 940 mm height were packed with 25 g of IOCSp. The 

synthetic solution was run through the packed column in the up flow direction. The columns 

operated for 24 days and 28 days with As(III) and As(V); respectively. After 43 days running, 

the IOCSp was generated with 12 L of 0.3 M NaOH and backwashed with deionized water until 

the pH of effluent was equal to the pH of the influent. 

 

The results showed the concentration of arsenic in the effluent is less than 50 µg/L. The 

concentration of iron oxide was approximately the same as in the influent (0.03 mg/L-0.1 mg/L). 

Also, the throughput volume of As(III) and As(V) was nearly 178 L and 153 L; respectively. 

Figure 1.9 illustrates the removal of arsenic from synthetic solution by IOCSp column.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Removal of arsenic from synthetic solution by IOCSp 

column (Initial As concentration = 1000 µg/L; weight of IOCSp = 25 

g) [46]. 
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Ephraim et al. [48] fabricated polymer nanocomposites for arsenic removal from water. 

Ethylene-Vinyl Acetate (EVA), polycaprolactone (PCL), and Fe3O4 were blended in an extruder 

with roller rotors. The mixture was divided into small chips and molded into strips to be used as 

adsorbents. Batch experiments were carried out to study the effect of temperature, pH, the 

contact time and the initial concentration of As(III) ions on the removal efficiency. 

 

The removed amount of As(III) increased as the pH value increased. The maximum 

removed amount was achieved at pH = 8.6, as illustrated in Figure 1.10. The contact time of 

As(III) ions on nanocomposite samples was tested, and from Figure 1.11, the adsorption was 

quick for the first hours and reached a maximum at 12 hr. Moreover, the adsorption capacity 

increased with increasing the initial concentration of As(III) ions. Increasing the temperature 

from 10 ˚C to 50 ˚C resulted in increasing the removal efficiency from 28.5% to 95.3%. 

 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 1.10 Variation of amount adsorbed with pH of nanocomposites 

[48]. 
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Rashmi et al. [49] used iron oxide-coated sand, in the presence of limestone, to remove 

As(III) from drinking water. Coated sand and coated sand with limestone were used in column 

and batch experiments. In column experiments, 120 cm height and 7.0 cm diameter packed 

column with uncoated sand, coated sand, and limestone arrangement was fabricated. 200 µg/L of 

As solution was passed through the column at different flow rates of 1, 2, 4, and 7 L/hr. 

 

The outcomes indicated 97.5% removal efficiency of As(III), as illustrated in Figure 1.12. 

This was obtained at a coated sand dosage of 5 g/100 ml at pH = 7.12, with or without limestone. 

In Figure 1.13, the column experiment showed 100% removal efficiency of As(III) at a lower 

speed compared to higher speed. 

 

 

 

Figure 1.11 Adsorption efficiency of As(III) on polymer 

nanocomposites [48]. 
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Figure 1.12 Removal efficiency of arsenic using coated sand at 

different limestone concentrations (LS limestone) [49]. 

Figure 1.13 Effect of flow rate on the removal efficiency of As [49]. 
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A variety of iron forms such as, Zero-Valent Iron (ZVI), Nano Zero-Valent Iron (NZVI), 

iron minerals (laterite, goethite, magnetite, hematite), and granular ferrous hydroxide had been 

used in different studies on arsenic removal from water. In Kanel et al. study [50], NZVI was 

synthesized and used as a colloidal reactive barrier material in removing As(V) from ground 

water. The amount of arsenic removed by Micron ZVI took hours to days, whereas, it took 

minutes using NZVI, even though the reaction mechanism of arsenic removal was similar in both 

cases. 

 

Guan et al. [51] investigated Granular Ferric Hydroxide (GFH) in removing arsenic from 

water. The adsorption of As(V) on GFH revealed variant shapes for different initial As(V) 

concentrations. They suggested that the adsorption isotherm of arsenate on GFH had very 

heterogeneous surface sites. When the equilibrium concentration was increased more surface 

sites were available. 

 

The adsorption edge of arsenate on GFH shifted slightly to the high pH range at an initial 

arsenate concentration ranging from 5 mg/L to 50 mg/L. However, the adsorption edge shifted to 

the low pH range as the initial arsenate concentration increased from 50 mg/L to 2000 mg/L. 

Figure 1.14 reveals the adsorption profile affected by the initial concentrations and pH values. 

This observation may be associated with the different reactions occurring at different initial 

arsenate concentrations.  



www.manaraa.com

28 

  

 

 

 

 

 

 

 

 

 

 

 

Various types of adsorbents were intensively investigated in many research works such 

as, activated carbon, activated alumina, zirconium oxide, and manganese oxide. Zhang et al. [52] 

developed multifunctional micro-/nano/-structured MnO2 spheres for arsenic removal. The 

synthesized MnO2 were used in carrying out the As(III) oxidation experiments. 

 

The outcomes revealed that As(III) can be effectively oxidized by the synthesized MnO2 

that allows better adsorption for As(V). The removal capacity was more than 90% of As(V) 

within a period 4 hr and the calculated max adsorption capacity was 14.5 mg/g. As(V) removal 

efficiency decreased with increasing pH values and the co-existing of anions SO4
-2, CO2

-3, and 

PO3
-4 had the same effect. 

Figure 1.14 Adsorption of arsenate on granular ferric hydroxide as functions of pH and 

concentration (concentration of granular ferric hydroxide, 10 g/L; arsenate concentration, 

5-2000 ppm as As(V)) [51]. 
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Hirstovski et al. [53] introduced a new zirconium oxide-based media for arsenate 

removal. ZrO2 spheres were fabricated and in micro (200-800 µm) and nanostructure (20-100 

nm) measurements. It was found that the arsenate adsorption is highest at pH = 6.4 and lowest at 

pH = 8.3. The [HAsO4
2-]/[H2AsO4

-
 ] ratio ≈ 46 at pH = 8.3, implying that almost all of the 

arsenate will be present in the most negative form, which will tend to adsorb less onto a 

negatively charged ZrO2 surface. Contrarily, the [HAsO4
2-]/[H2AsO4

-] ratio ≈ 0.65 at pH = 6.4, 

implying a greater presence of H2AsO4
- ions and thus better adsorption onto the negatively 

charged surface of the ZrO2 spheres.  
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1.5 Research Objectives  

 The aim of this research is to develop a new bulk modified nanocomposite material, 

which can be used as an adsorbent media in removing arsenic from drinking water. The 

following points summarize the objectives of this research: 

 

 To synthesize a nanocomposite polyurethane foam impregnated with iron oxide 

nanoparticles (PU-IONPs) by incorporating the adsorbent particles within the foam 

media. 

 

 To determine the optimal composition of PU nanocomposite which yields the highest 

removal capacity of arsenic based on the following parameters: 

1. The composition ratio of major foam components; i.e., PPG:TDI. 

2. The weight percentage of IONPs inside the foam matrix. 

3. The size of IONPs that is being used.  

 

 To Study the effect of application parameters on the performance of the PU 

nanocomposite such as: 

1. The structure of the PU foam. 

2. Contact time between 3 hr and 24 hr. 

3. pH of the treated solution. 

4. The concentration of As in the solution. 
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CHAPTER 2 

EXPERIMENTAL WORK 

2.1 Materials 

The raw materials which were used in the synthesis of PU foam nanocomposites are 

Polypropylene glycol (PPG), Toluene di-isocyanate (TDI) and Iron oxide nanoparticles (IONPs). 

Those were obtained from commercial sources along with other ingredients; polysiloxane 

surfactant to maintain the foam structure, nitrogen gas (Airgas, O2 free UHP) to provide an inert 

atmosphere for the PPG and TDI reaction, and 18.2 MOhm-cm deionized water as a blowing 

agent for foaming process, as well as, to prepare the standard solutions of arsenic. 

 

2.1.1 Polypropylene glycol 

Polypropylene glycol is a linear polymer of propylene oxide with two terminal hydroxyl 

groups [54]. It is odorless, colorless and viscous liquid and it is produced in various grades 

depending on the average number of oxypropylene groups (n). Figure 2.1 illustrates the chemical 

structure of PPG. 

 

 

 

 

The different forms of PPG are generally named according to n value which often occurs 

between 200 and 4000, for example, PPG 425, PPG 725 and PPG 1200. As the molecular units 

in the polymer increase (which means increasing the molecular weight), the viscosity increases 

and the solubility in water decreases.  

Figure 2.1 Chemical structure of Polypropylene glycol [55]. 
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The major method of the production of PPG requires raw materials which are derived 

from the petrochemical industry. Conventionally, the propylene, which is a byproduct of 

gasoline manufacture, is oxidized by hydrogen peroxide (H2O2) and converted to propylene 

oxide, then this compound is polymerized by using a catalyst such as, potassium hydroxide 

(KOH). Alternative methods of production are being investigated to reduce the dependence on 

fossil fuels as the main source of propylene compound [56]. 

 

PPG compounds are widely used in many products as they acquire physical and chemical 

properties, which make them competitive candidates. PPG has low toxicity and ability to absorb 

and retain moisture, therefore, it is used in food production, cosmetic, and personal care 

products. In addition, it is used in the manufacture of polyurethane foam, flexible epoxy resins, 

and radiation-curable coatings [57].  

 

In this research, PPG was purchased from Sigma Aldrich Co. LLC with grade PPG 1200. 

Before using it in the chemical reaction with TDI, PPG was dehumidified in a vacuum oven at 70 

˚C for 24 hr, to allow homogenous reaction between PPG and TDI in the absence of moisture 

which could affect the foaming process in the later stage of synthesis. 

  

2.1.2 Toluene Di-isocyanate 

Toluene di-isocyanate is an organic compound with two functional groups of isocyanate 

(NCO). It has six possible isomers but the majority of commercially produced isomers are 

available in two forms; 2,4-TDI (CAS: 584-84-9), 2,6-TDI (CAS: 91-08-7) or a combination of 

both with different percentages [58]. Figure 2.2 illustrates the chemical structure of TDI.  
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2,4-Toluene di-isocyanate is formed through multistage of chemical reactions, starting by  

toluene via dinitrotoluene (DNT) and ending by the phosgenation process where 2,4-

diaminotoluene (TDA) is treated with phosgene to form TDI. Then the crude TDI mixture is 

distilled and can be produced in ratios; 80:20 (2,4-TDI and 2,6-TDI) or 65:35 (2,4-TDI and 2,6-

TDI). The reactivity of isocyanate functional groups in TDI depends on its position; 4-position of 

isocyanate is around four times reactive than 2-position in 2,4-TDI. In 2,6-TDI both positions are 

symmetric around the aromatic ring, however, the reaction of one group will affect the reactivity 

of the second group. TDI is used in the production of flexible polyurethane foam by the reaction 

of isocyanate groups with hydroxyl groups exist in PPG structure to form strong-bonded 

urethane links [60,61]. The TDI, which was used in preparing the PU samples in this research, 

was purchased from Alfa Aesar with (2,4 - 80%, 2,6 - 20%) composition. 

 

Working with TDI requires a high degree of cautions as it has scale 3 on health division 

of “Standard System for the Identification of the Hazards of Materials for Emergency Response” 

so it is considered fatal if inhaled, causes skin irritation, causes serious eye irritation and may 

cause an allergic skin reaction. Moreover, it is suspected of causing cancer and being harmful to 

aquatic life with long lasting effects [62,63]. 

 

 

Figure 2.2 Chemical structure of Toluene Di-isocyanate [59]. 
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2.1.3 Iron Oxide Nano Particles (IONPs) 

Iron oxide nanoparticles (IONPs), which were impregnated in the PU matrix, have the 

chemical formula Fe3O4 with two size ranges: 15-20 nm and 50-100 nm. The high-purity product 

is prepared by using analytically pure chemical reagent as raw materials, and washed with 

distilled water. Its purity is higher than 99.5%, Table 2.1 lists the composition analysis of Fe3O4 

[64]. IONPs, which was purchased from US Research Nanomaterials Inc., have the following 

physical properties: BET surface area 81.98 m2/g, spherical particles with dark brown color and a 

bulk density of 0.85 g/cm3. Figure 2.3 provides a Transmission Electron Microscope (TEM) 

image of IONPs. 

 

Table 2.1 Certificate of analysis of IONPs (Fe3O4) [64]. 

Iron Oxide Nanoparticles (Fe3O4) Composition 

Cr Co Na Mn Ni Mg Al 

2 ppm 35 ppm 55 ppm 39 ppm 16 ppm 2 ppm 4.78 ppm 
  

 

Generally, IONPs enjoy broad interests due to their superparamagnetic properties and 

their potential applications in many fields, compared to Co and Ni which are also highly 

magnetic materials but they are toxic and are easily oxidized. IONPs are used in 

Electromagnetic-wave absorption, Ferro-fluids, High-density magnetic recording, Magnetic cell 

separation, Magnetic coatings, Magnetic resonance imaging contrast enhancement, Magnetically 

controlled transport of anti-cancer drugs, Magneto-optical devices, Semiconductors and Removal 

of actinides from waste water. 
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2.2 Synthesis and Characterization 

2.2.1 Synthesis of PU Foam Nanocomposites   

The experimental setup used in this study is described in a previous publication of similar 

work for the removal of lead ions from drinking water using polyurethane foam functionalized 

with sulfonic groups in BES chain extenders [65]. A 3-neck round bottom reaction flask was 

placed in an oil bath and fitted with a mechanical stirrer and a condenser at the center neck. A 

nitrogen gas inlet was fitted at the right neck and a dropping funnel was fitted at the left neck. 

The reaction between PPG and TDI was conducted at 75 ˚C in an inert atmosphere. Figure 2.4 

shows the experimental setup. 

 

 

 

 

Figure 2.3 TEM image of IONPs (15-20 nm) [64]. 
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Initially, the 3-neck flask was charged with TDI and allowed to stabilize at 75 ˚C in a 

saturated nitrogen atmosphere; a dropping funnel was filled with a pre-weighted amount of PPG 

which was added dropwise and allowed to react with TDI for 4-5 hours until an initial isocyanate 

content of 11-12% is reached, according to ASTM D5155. IONPs was manually added to the 

mixture in different weight percentages (4%, 8%, 12%, and 16%). Based on the amount of PPG 

used, a pre-weighted amount of deionized water was added as a blowing agent along with the 

polysiloxane surfactant. The compound was mixed using a mechanical stirrer at 2500-3000 rpm 

for 10-15 seconds. The reaction of water with the remaining isocyanate groups released CO2 gas 

to form the final foam structure [66]. 

 

A total of eight samples were prepared using two PPG:TDI ratios; 1:1.75 and 1:2, and 

four concentrations of 15-20 nm IONPs (4% - 16%). Table 2.2 lists the composition of the 

various PU foam samples prepared for this research work. Two additional foam samples were 

Figure 2.4 Experimental setup of PU foam. 
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prepared using a different range of nanoparticle sizes; 50-100 nm, at 12% loading amount for 

1:1.75 and 1:2 PPG:TDI compositions.   

 

Table 2.2 Compositions of PU-IONPs samples for batch sorption analysis.  

 

 

 

 

 

 

2.2.2 Characterization of PU Foam Nanocomposites   

2.2.2.1 Optical Microscope 

The cellular structure of PU-IONPs adsorbents was investigated for 1:1.75 and 1:2 

PPG:TDI compositions by using a ZEISS Stemi 2000-C Stereo Microscope. The optical 

microscope is able to generate a micrograph of small objects by means of magnification lenses 

and visible light, the magnification range of this microscope is 0.65X-5X. The cell size 

measurement can be obtained from analyzing the optical micrographs of the foam samples. 

 

2.2.2.2 SEM and EDX 

A JEOL JSM-6460 LV Scanning Electron Microscope with Energy Dispersive X-ray 

(SEM/EDX) was used to examine the pore structure and the distribution of IONPs in the foam 

matrix at higher magnifications. EDX mapping technique was used to detect the IONPs 

distribution inside the foam. Furthermore, the elemental analysis was performed on PU 

nanocomposites before and after exposure to arsenic solution. 

Group Sample ID Molar Ratio of  (PPG:TDI) Loaded IONPs (%) 

I 

I-1 

1 : 2 

4 

I-2 8 

I-3 12 

I-4 16 

II 

II-1 

1 : 1.75 

4 

II-2 8 

II-3 12 

II-4 16 
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2.2.2.3 Porosity and Density  

Measurements of porosity-related characteristics were conducted for both 1:1.75 and 1:2 

PPG:TDI compositions by Micromeritics Analytical Services. MicroActive AutoPore IV 9600 

was used to measure the foam porosity by applying various levels of pressure to the sample 

immersed in mercury, this technique is called “mercury porosimetry”, or usually, “mercury 

intrusion”. The pressure required to impose mercury into the sample’s pores is inversely 

proportional to the size of the pores. 

 

The term "porosimetry" is often used to include the measurements of pore size, volume, 

distribution, and density. Porosity is a key parameter in understanding the structure and potential 

use of many materials. The porosity of a material affects its physical properties and, 

consequently, its behavior in certain application. The adsorption, permeability, and density are 

influenced by a material’s porosity and determine the manner and fashion in which it can be 

appropriately used [67]. 

 

Accupyc II 1340 was used to determine the open cell content (ASTM D6266) and 

skeletal density. The instrument measures the volume of the sample, excluding interstitial voids 

in bulk powders and any open porosity in the individual particles, to which the gas has access. 

Internal (closed) porosity is still included in the volume [68]. 
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2.2.2.4 Atomic Absorption Spectrometer (AAS) 

  Thermo Electron Corporation S4 Atomic Absorption Spectrometer (AAS) was utilized 

to measure the adsorption capacity of PU nanocomposites. Fundamentally, flame atomic 

absorption spectrometer involves generating a gaseous phase of free atoms by heating a sample 

in a flame, or as a product of chemical reaction process, then passing a narrow bandwidth light at 

a certain wavelength through the atoms in the flame. Those conditions cause absorption of 

radiation that is selective for a particular element [69]. 

 

Spectrometer concerns the interaction of light with particles. When light is absorbed by 

an element it results in increasing the energy of the molecules or atoms which comprise the 

sample. Especially, absorption of radiation by the atoms of an element exhibits as a spectrum 

that is characteristic of the element. Atomic absorption spectrophotometers can vary in cost, size, 

complexity and performance. The key elements of a conventional atomic absorption 

spectrometer are: 

 

1. Line source of radiation. 

2. Atomizer, of which there are two types: flame and furnace. 

3. Monochromator. 

4. Detector for the measurement of intensity of the radiation passing from the sample. 

 

Figure 2.5 illustrates the typical arrangement of an atomic absorption spectrometer. 
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2.3 Batch Sorption Experiments 

Throughout the research work, batch sorption experiments were conducted in multi- 

stages. In the first stage, 1 g cubic samples were prepared from Group I and Group II 

compositions, were soaked in 50 ml of 100 ppb arsenic solution for 24 hours. The cubes were 

shaken in normal solutions (pH = 6.5) at 200 rpm and at room temperature (22 ˚C). The aim of 

the first stage is to investigate the effect of the foam composition; i.e., PPG:TDI ratio and 

%IONPs, on the removal capacity of arsenic. 

 

In the second stage, the samples with different IONPs sizes; i.e., 15-20 nm and 50-100 

nm, were used in similar conditions of the first batch sorption experiments but for 6 and 24 hours 

to study the effect of the nanoparticles size and contact time on the adsorption capacity. After 

each batch test, 25 ml of each treated solution was filtered and preserved with 2% HNO3, for 

AAS analysis. 

Figure 2.5 AAS major components [69]. 
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Further stages were carried out to investigate the effect of other variables on the removal 

capacity. The target samples in those stages have PPG:TDI ratio 1:1.75 and 15-20 nm IONPs 

(12%).  The variables such as, the shape of PU nanocomposites (Cube vs. Granular), the weight 

of adsorbents (0.5 g, 1 g, 1.5 g and 2 g) , pH levels (3.5, 6.5, 8.5 and 10.5), and the concentration 

of arsenic solutions (100 ppb, 200 ppb, 400 ppb and 600 ppb), were chosen to extend the 

performance analysis of PU-IONPs adsorbents. In Figure 2.6, the following chart shows the 

sequence of the experiment stages. 
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Figure 2.6 Flow chart of batch sorption experiments. 

Other Variables

Time Intervals

Shape of Foam

Size of IONPs

% IONPs

Composition Ratio (PPG:TDI)

Experiment Levels

1:2

4% 8% 12%

15-20 
nm

Cube

(0,3,6,..24) hr

Gran.

50-100 
nm

Cube Gran.

16%

1:1.75

4% 8% 12%

15-20 
nm

Cube

(0,3,6,..24) hr

Gran.

(0,3,6,..24) hr

pH Wt. [As]

50-100 
nm

Cube Gran.

16%
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2.4 Column Study 

Laboratory column study is considered the second step in separation processes 

development, it enables to scale them up for commercial operations. The column set up requires 

some knowledge to help eliminate wasted lab time spent in “trial and error”, general guidelines 

are available online for such experiment [70]. 

 

In this experiment, a column design and set up were proposed by using a glass column of 

19 mm inner diameter and 300 mm height, the column was packed with 8 g (57 ml, fixed bed 

height 20 cm) of granular PU-IONPs adsorbents. 120 ppb arsenic solution was run through the 

packed column in the up flow direction, using Fisher Scientific™ Variable-Flow peristaltic 

pump, at a filtration velocity of 1.5 ml/min. The column was operated in circulation mode for 9 

days and the samples from the column test were collected at a regular number of circulations, the 

removal capacity of arsenic species was analyzed by AAS. A schematic illustration of the 

column study setup is shown in Figure 2.7. 

 

 

 

 

  

Figure 2.7 Schematic of column experiment. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Characterization Analysis 

3.1.1 Optical Microscope 

The optical micrographs obtained for PU-IONPs foam samples at 1X, reveal a distinct 

difference in the cellular structure between the two compositions. Figure 3.1 shows the 

microstructure of (1:1.75) and (1:2) PPG:TDI compositions. It can be noticed that the 1:2 

PPG:TDI composition exhibits larger cell size than the 1:1.75 PPG:TDI composition. However, 

a disordered distribution of the cells can be observed for both compositions. The polyurethane 

chemistry (i.e., foam composition) and the foaming reaction are substantial factors for cell 

nucleation, growth, and distribution, which eventually determine the foam structure [71,72]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Optical micrographs of PU-IONPs foams, (A): PPG:TDI ratio 1:2, (B): PPG:TDI ratio 1:1.75. 
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3.1.2 SEM and EDX  

In order to obtain a high-resolution SEM imaging for non-conductive foam samples, low 

vacuum operation mode and a backscatter detector were used. Figure 3.2 depicts the porous 

structure of PU-IONPs foam samples with a combination of open and closed cells. The observed 

structure provides more surface area with IONPs instead of depositing them on the surface of 

foam only [44]. The adsorption process of arsenic species will be enhanced as long as more 

exposed surface areas of IONPs are available. 

 

 

 

 

 

 

 

 

 

 

 

The EDX mapping technique was used to detect the IONPs distribution inside the foam. 

Furthermore, a quantitative analysis (EDX spectrum) was conducted on individual points, as 

illustrated in Figure 3.3. The atomic and weight percentages for all the detected elements are 

listed in Table 3.1.  

 

Figure 3.2 SEM image of PU-IONPs nanocomposite at 500X 

magnification. 
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Table 3.1 Elemental analysis of the concentrated spot in Figure 3.3. 

Element Weight % Atomic % 

C 14.93 28.3 

O 34.69 49.35 

Fe 46.05 18.77 

Si 4.03 3.26 

 

 

The EDX elemental analysis, which was performed on the adsorbent foam before and 

after soaking in a 100 ppb standard As solution, shows the presence of arsenic in the bulk of the 

foam samples, along with the original elements of PU-IONPs foam composition (i.e., Carbon, 

Oxygen, and Iron), as illustrated in Figure 3.4.  

 

 

 

 

IONPs 

concentrated 

spot 

Figure 3.3 EDX mapping scan of PU nanocomposite foam. 
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3.1.3 Porosity and Density 

The measurements of porosity and density were conducted for both 1:1.75 and 1:2 

PPG:TDI compositions. MicroActive AutoPore IV 9600 was used to measure the nanocomposite 

foam porosity by applying various levels of pressure to foam samples immersed in mercury. 

Table 3.2 summarizes the bulk density, total pore area, and porosity for both PU compositions. 

 

Table 3.2 PU-IONPs porosity-related characteristics. 

 

Figure 3.5 shows the cumulative mercury intrusions versus the pore size diameter for 

both compositions. 

 

 

PPG:TDI Bulk Density (g/ml) Total Pore Area (m2/g) Porosity (%) 

1:2 0.925 28.48 8.26 

1:1.75 1.17 40.16 10.17 

Figure 3.4 EDX elemental analysis, (A): PU-IONPs adsorbent before exposure to As solution, 

(B): PU-IONPs adsorbent after exposure to As solution. 
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PU foams with PPG:TDI of 1:1.75 exhibit higher bulk density compared to those with 

PPG:TDI of 1:2. In addition, the total pore area and porosity were found to be greater in 

PPG:TDI (1:1.75). This can be attributed to the physical properties of each material components 

in the mixture such as, density and viscosity.  

 

3.1.4 Open Cell Content 

The open cell content of the foam samples was measured using AccuPyc II 1340 

FoamPyc V2.00 Instrument, according to ASTM D6266. The calculation of open cells volume in 

the foam is found by the difference of nitrogen gas volume to the sample volume. The obtained 

results are listed in Table 3.3 for both PPG:TDI molar ratios. 

 

Table 3.3 Open cell content of PU-IONPs nanocomposite. 

PPG:TDI Molar ratio Open Cell (%) Closed Cell (%) 

1:2 66.84 33.16 

1:1.75 81.59 18.41 

 

 

Figure 3.5 Cumulative intrusion vs pore size diameter. (A): PPG:TDI 1:2, (B): PPG:TDI 1:1.75. 
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The above result shows that increasing the molar ratio of TDI to PPG produces less open 

cell foam compared to the lower ratio (1:1.75), considering that the reaction conditions and the 

synthesis method were maintained constant for both samples. This can be correlated to the 

increased amount of isocyanate groups in the foam formulation which lead to excessive foaming 

followed by foam collapse during molding, thus reducing the number of open cells in the foam 

[73]. 

 

3.2 Performance Analysis 

3.2.1 Batch Sorption Studies 

3.2.1.1 Effect of PU-IONPs Composition 

In order to study the capability of the adsorbents in removing arsenic, all foam samples 

were tested under the same conditions. The foam samples of Group I (1:2 PPG:TDI) 

demonstrated higher removal capacity compared to the samples of Group II (1:1.75 PPG:TDI). 

This can be explained by the difference in foam structure between the two compositions. The 

composition of Group I yields larger cell size distribution and, subsequently, higher adsorption 

surface area than Group II. Moreover, the closed cell content in Group I was measured and found 

to be 33.16% while in Group II it was 18.41%; which provides additional contact surfaces 

between the arsenic solution and the adsorbent.  

 

Figure 3.6 shows the As removal capacity for both PU compositions, Group I and Group 

II, at different loading ratios of IONPs.  In Group I, Figure 3.6(A), the As removal capacity 

increased as the amount of IONPs increased from 4% to 12% and remained constant at higher 
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IONPs content. Meanwhile, the As removal capacity in Group II, Figure 3.6(B), increased with 

higher IONPs content up to 12% and decreased at higher IONPs content.   

 

Increasing the amount of IONPs will increase the amount of arsenic ions attached to iron 

under sorption mechanisms. However, the open cell structure of the PU foam can tolerate a 

maximum amount of IONPs in the matrix, which is dependent on the rigidity of the foam itself.  

The decrease in As removal in Group II (lower PPG:TDI ratio) at higher content of IONPs (16%) 

is attributed to the relatively dense structure of this composition compared to higher PPG:TDI 

ratio. Therefore, a certain amount of IONPs might be aggregated and less binding sites will be 

available for arsenic species. 

 

 

 

 

Figure 3.6 (A): Removal capacity of Group-I samples with composition ratio 1:2 (PPG:TDI), (B): Removal capacity 

of Group-II samples with composition ratio 1:1.75 (PPG:TDI). 
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3.2.1.2 Effect of IONPs size 

The second stage of batch adsorption analysis was performed to investigate the effect of 

IONPs size on the As removal capacity of the PU nanocomposite foams. The foam samples were 

prepared with the optimum percentage of loaded IONPs (12%) using both PPG:TDI composition 

ratios; 1:2 and 1:1.75, and two size ranges of the IONPs; 15-20 nm and 50-100 nm. The sorption 

batch experiments were carried out under two exposure time intervals; 6 hr and 24 hr. Figure 3.7 

reveals the As removal capacity for the various compositions and exposure times. 

 

The results shown in Figure 3.7 points toward an enhancement in the performance of the 

adsorbents when the size of IONPs is decreased from 50-100 nm to 15-20 nm under the same 

exposure conditions for both compositions (PPG:TDI 1:2 and 1:1.75). This behavior can be 

attributed to the higher surface area provided with smaller size particles and the weaker effect of 

self-aggregation of the nanoparticles [74,75]. Additionally, by allowing more contact time 

between the arsenic species and the adsorbent surface, higher removal capacity can be attained 

due to the filling of the available binding sites on the surface. 

Figure 3.7 Effect of IONPs size on the As removal capacity. (A): PPG:TDI 1:2, (B): PPG:TDI 1:1.75. 
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3.2.1.3 Effect of PU-IONPs Shape 

To study the effect of shape on the adsorption capacity, foam samples with a granular 

shape were prepared with 12 wt.% loaded IONPs using both PPG:TDI composition ratios and 

IONP sizes; under similar exposure conditions of the second stage. Figure 3.8 illustrates the 

removal capacity of granular PU-IONPs adsorbents. 

 

 The outcomes of third batch experiments reveal an increase in the adsorption capacity of 

both compositions (PPG:TDI 1:2 and 1:1.75) and IONP sizes (15-20 nm and 50-100 nm) 

compared to the second stage at both exposure times. Foam samples with the granular form 

provide more contact sites on the surface of adsorbent than the cubic one; therefore, more arsenic 

species can be trapped by an adsorption mechanism. The increase in the As removal capacity, for 

all samples, is calculated and listed in Table 3.4. 

 

 

Figure 3.8 (A): Arsenic removal capacity of composition ratio 1:2 (PPG:TDI), (B): Arsenic removal capacity of 

composition ratio 1:1.75 (PPG:TDI), with granular shape and two size ranges of IONPs; 15-20 nm and 50-100 nm. 
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Table 3.4 Effect of granular shape on the removal capacity of arsenic. 

Molar Ratio of  

(PPG:TDI) 

IONPs Size 

(nm) 

Contact Time 

(hr) 

Increase Percentage 

(%) 

1:2 

15-20 
6 17.35 

24 30.1 

50-100 
6 44.32 

24 40.46 

1:1.75 

15-20 
6 71.68 

24 66.75 

50-100 
6 88.89 

24 100 

 

Varying the shape of foam from a cubic to a granular form affects the removal capacity 

of the adsorbent. It can be noticed that the increase ranges, approximately, between 20% in the 

case of PPG:TDI (1:2), 15-20 nm IONPs, and 6 hr contact time, and 100% in the case of 

PPG:TDI (1:1.75), 50-100 nm IONPs, and 24 hr contact time. Also, the difference in removal 

capacity for both PPG:TDI compositions, when they were used as cubic shape compared to 

granular, is eliminated. In other words, the effect of the difference in the foam cellular structure 

for both compositions is degraded by altering the adsorbent shape from cubic to granular. 

 

3.2.1.4 Effect of Contact Time 

The effect of contact time on the removal capacity of arsenic was studied in the range of 

3 hr to 24 hr exposure time. One gram foam samples of three different types of adsorbents; (A) 

PPG:TDI ratio (1:2)-Cube, (B) PPG:TDI ratio (1:1.75)-Cube, and (C) PPG:TDI (1:1.75)-

Granular were used. Figure 3.9 shows the time profile of arsenic adsorption on PU-IONPs 

nanocomposite with an initial concentration of 100 ppb.     
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The experimental outcomes indicate that the uptake of As increases with time. However, 

the rate of adsorption was rapid in the first 12 hr after which the rate slowed down as the 

equilibrium state was approached. The highest removal capacity occurred at 24 hr for all 

adsorbents; 45.29%, 37.14%, and 27.16% removal capacities were achieved for PPG:TDI 

(1:1.75)-Granular, PPG:TDI ratio (1:2)-Cube, and PPG:TDI (1:1.75)-Granular; respectively.  

 

 

Figure 3.9 Effect of contact time on the removal capacity of As, using (A) PPG:TDI ratio (1:2)-Cube, (B) PPG:TDI 

ratio (1:1.75)-Cube, and (C) PPG:TDI (1:1.75)-Granular. 
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3.2.1.5 Effect of Solution pH 

The effect of the solution pH on the adsorption of As was examined. Foam samples made 

with a PPG:TDI composition ratio of 1:1.75 in a granular shape were used in this study. The 

foam samples were soaked in 100 ppb As solutions with four different levels of pH (i.e., 3.5, 6.5, 

8.5, and 10.5), for 24 hr at room temperature 22 ˚C. Figure 3.10 shows the removal amount of As 

at various pH levels. 

 

 

 

 

 

 

 

 

 

 

 

The adsorption process of As is affected by the pH level of the contaminated solution. 

The removed amount of As is higher as the solution becomes more acidic (i.e., pH<7), compared 

to the removed amount of As when the solution is more basic (i.e., pH >7). At a pH level below 

the pHPZC of an oxide, it produces substantially more positive charges than negative charges on 

the surface, whereas, at pH levels above the pHPZC it produces more negative charges on the 

surface than positive charges [76]. The pHPZC of Fe3O4 is approximately 8 as reported in the 

Figure 3.10 Effect of pH on the removed amount of As by PU-IONPs 

nanocomposite. 
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literature [77]. Therefore, the surface of PU-IONPs nanocomposite is predominantly negatively 

charged above pH = 8. Hence, the chemisorption of arsenic species is less, which lowers the 

removed amount of arsenic species. 

 

3.2.1.6 Effect of Weight 

To study the effect of using different sample weights on the removal capacity of arsenic, 

four samples of PPG:TDI with a molar ratio of 1:1.75 and a granular shape were prepared and 

soaked in 100 ppb arsenic solution for 24 hr. Figure 3.11 reveals the removed amount of As at 

different foam sample weights. 

 

 

 

 

 

 

 

 

 

 

 

 

The removed amount of As increases from 40 ppb to 60 ppb, when the weight of PU-

IONPs nanocomposite foam increases from 0.5 g to 2 g; respectively. This correlates with the 

increase of IONPs amounts as the foam weight is increased, therefore, more adsorption sites will 

Figure 3.11 Removed amount of As (ppb) with respect to the foam 

weight. 
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be available to uptake arsenic species. A similar finding for the effect of adsorbent weight on the 

removal capacity was reported in the literature [50]. 

 

3.2.1.7 Effect of As Concentration 

To investigate the effect of using different concentrations of arsenic solutions (i.e., 100 

ppb, 200 ppb, 400 ppb, and 600 ppb) on the removal capacity of arsenic, one gram granular 

samples of PPG:TDI with a molar ratio of 1:1.75 were kept in contact with arsenic solutions for 

24 hr. The outcomes of this batch experiment are illustrated in Figure 3.12. 

 

 

 

 

 

 

 

 

 

 

 

 

The removal capacity of arsenic decreases as the As concentration increases in the 

solution. The lower concentration As solution exhibits a higher removal capacity since the 

available binding sites for adsorption process are almost the same for all foam samples; 

consequently, certain amounts of arsenic will be adsorbed from each concentration. A similar 

Figure 3.12 Effect of initial arsenic species concentration on the 

removal capacity. 
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finding for the effect of As concentration on the removal capacity was reported in the literature 

[78]. 

 

3.2.2 Column Study 

A long-term column study was carried out to study the removal capacity of As species. 

500 ml of arsenic solution with 120 ppb was passed through a packed column in the up flow 

direction at a filtration flow rate of 1.5 ml/min. The column was packed with 8 g (57 ml, fixed 

bed height 20 cm) of granular PU-IONPs adsorbents with PPG:TDI ratio (1:1.75). The needed 

time to complete one flow cycle was estimated to be 9 hours and 40 minutes. The column was 

operated for 10 consecutive days. Figure 3.13 represents the removed amount of As during the 

whole operating time of the column. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Column study for arsenic species. 

Initial concentration of As solution 
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The adsorption of arsenic species was very rapid on the first few cycles with an 

approximately 50% arsenic removal within 2 cycles. After that, a constant increase in the 

removal rate occurred. All arsenic species were removed in 22 cycles (approximately 9 days) of 

operating period. This behavior of removing arsenic can be explained by the abundance of 

adsorption sites at the beginning of the process, which decreases gradually with more adsorbed 

arsenic species.  

 

3.3 Sorption Isotherms Models  

Langmuir and Freundlich sorption isotherm models were studied on the equilibrium data 

collected from the batch experiments of the foam composition with a PPG:TDI ratio of 1:2 at 22 

˚C. The equilibrium data was used to derive the constants for each model, as follows. The 

Langmuir isotherm equation [79] is represented by: 

qe =
qmbCe

1+bCe
                    (1) 

where qe is the amount adsorbed on the surface of the adsorbent (mg/g), Ce is the equilibrium 

concentration of the adsorbate (mg/L), qm and b are the Langmuir parameters representing the 

maximum adsorption capacity (mg/g) and the binding energy of adsorption (L/mg); respectively. 

The plot of 1/qe vs. 1/Ce gives a linear representation of Langmuir equation and the constants 

were found from the linear plot.  
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The Freundlich isotherm equation [79] is represented by: 

qe = KFCe1/n                     (2) 

where qe is the adsorbed amount in mg/g, Ce is the equilibrium concentration of the adsorbate 

(mg/L) and KF and n are the Freundlich constants related to the adsorption capacity (mg/g) and 

adsorption intensity. The Freundlich constants KF and n were calculated from the linear 

representation of Freundlich log(qe) vs. log(Ce). Figure 3.14 shows the linear fit for the 

equilibrium data of both models.  

 

Table 3.5 shows the calculated values of R2, qm, b, KF and n for both models. 

 

Table 3.5 Parameters of Langmuir and Freundlich isotherms for As sorption on PU-IONPs adsorbents. 

 

 

 

 

Langmuir Isotherm  Freundlich Isotherm 

b (L/mg) qm (mg/g) R2  KF (mg/g) n R2 

6.505 0.0209 0.949  2.361 0.544 0.953 

Figure 3.14 (A) Langmuir and (B) Freundlich isotherms for As sorption on the PU-IONPs adsorbents. 
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It is well understood that the extraction of the arsenic ions from aqueous solutions 

depends on the active functional groups on the PU surface and the oxidation state of the arsenic 

species. As the R2 value is slightly higher for the Freundlich isotherm, the adsorption appears to 

be through physio-sorption and has a heterogeneous surface composed of different classes of 

adsorption sites. Furthermore, the Freundlich constant (n) is in the range of 0–10, indicating that 

adsorption is the favorable removal mechanism [43]. The adsorption of arsenic on PU-IONPs 

nanocomposite can be concluded to follow both models; i.e., Freundlich and Langmuir 

isotherms, considering the high values of R2 and the correlating parameters for both models. 

 

3.4 Sorption Kinetics Models  

In order to examine the kinetic mechanism which controls the adsorption process, several 

kinetic models like Lagergren pseudo-first-order [80] and pseudo-second-order [81] were tested 

to interpret the experimental data. The integrated linear pseudo-first-order rate equation can be 

represented as:   

log(qe − qt) = log qe − (K1/2.303)t                    (3) 

where qe is the amount of As adsorbed (mg/g) at equilibrium, qt is the amount of As adsorbed 

(mg/g) at any time “t”. K1 is the pseudo-first-order rate constant (1/hr). The plot of log(qe-qt) vs. t 

gives a linear representation of Lagergren pseudo-first-order as illustrated in Figure 3.15. The 

values of K1 were obtained from the slope of log(qe-qt) vs. t plots. 
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Figure 3.15 Pseudo-first-order kinetics for (A) PPG:TDI ratio (1:2)-Cube, (B) PPG:TDI ratio (1:1.75)-Cube, and 

(C) PPG:TDI (1:1.75)-Granular. 
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The linear form of pseudo-second-order rate equation is represented by: 

1/qt = 1/(K2qe2)t + 1/qe                    (4) 

where qt is the amount of As adsorbed (mg/g) at any time “t”, qe is the amount of As adsorbed 

(mg/g) at equilibrium. K2 is the pseudo-second-order rate constant (g/(mg.hr)). The experimental 

data plotted against 1/qt vs. 1/t is shown in Figure 3.16; K2 and qe were calculated from the slope 

and intercept of these plots. Table 3.6 summarizes the calculated values of K1, K2, qe, and R2 for 

both kinetic models. 

 

Figure 3.16 Pseudo-second-order kinetics for (A) PPG:TDI ratio (1:2)-Cube, (B) PPG:TDI ratio (1:1.75)-Cube, and 

(C) PPG:TDI (1:1.75)-Granular. 
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Table 3.6 Kinetic models rate constants (K1) and (K2). 

 

The evaluation of the best fit kinetic models was made based on R2 values. The calculated 

values of R2 for the pseudo-second-order are higher than the pseudo-first-order. Hence, the 

second order kinetic model better represented the adsorption kinetics, suggesting that the 

adsorption process is more likely to be a chemisorption. The adsorption behavior may involve 

valence forces through the sharing of electrons between arsenic and the adsorbent [81]. 

Furthermore, previous investigations support that a second order kinetic model correlates well 

with the experimental data of arsenic adsorption [82-85]. Adsorbent (A); PPG:TDI ratio (1:2)-

Cube fits better than adsorbent (B);PPG:TDI (1:1.75)-Cube, while, Adsorbent (C); PPG:TDI 

(1:1.75)-Granular fits better than adsorbent (B) and (A); respectively. 

 

 

 

  

Type of Adsorbent 

Pseudo first order  Pseudo second order  

K1 (1/hr) R2  K2 (g/(mg.hr)) qe (mg/g) R2  

(A) 0.32 0.690  0.38 0.082 0.953  

(B) 0.16 0.749  17.01 0.011 0.793  

(C) 0.14 0.864  3.77 0.025 0.982  
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CHAPTER 4 

CONCLUSIONS 

Polyurethane nanocomposite foams were synthesized using PPG, TDI, and IONPs to 

remove arsenic species from drinking water. The performance analysis (i.e., removal capacity) of 

PU-IONPs was examined in two aspects; studying the effect of synthesis parameters (such as, 

PPG:TDI ratio, loading amount of IONPs, and IONPs size) and studying the effect of 

experimental parameters (such as, foam shape, contact time, pH, foam weight, and As 

concentration). In addition, related-characterization analysis was investigated (e.g., SEM/EDX, 

Porosity, and open cell content) to correlate the structure-property-performance relationship.  

 

The major conclusions, which can be made from this research work, are listed in the 

following points: 

 

1. The molar composition of PPG:TDI (1:2) demonstrated higher removal capacity compared to 

the molar composition of PPG:TDI (1:1.75). The optimal loading percentage of IONPs inside 

the foam matrix was found to be 12% for both molar compositions. Decreasing the size of 

IONPs from 50-100 nm to 15-20 nm showed higher removal capacity of arsenic species. 

 

2. Using the granular shape of PU-IONPs foam provided higher removal capacity compared to 

the cubic shape for both compositions. The effect of the difference in the foam cellular 

structure for both compositions is degraded by altering the adsorbent shape from cubic to 

granular. Increasing the weight of used adsorbents led to increasing the removal capacity 

under the same conditions. 



www.manaraa.com

  

66 
 

3. The adsorption capacity of PU-IONPs increases as more contact time is allowed. However, 

the equilibrium state was achieved in 24 hr in the batch experiment. The removal capacity of 

the nanocomposite PU-foam decreased as As species concentration increased in the solution. 

The experimental data was found to be the best fit for Freundlich isotherm model. The 

kinetic data, for three different types of adsorbents, correlated well with Pseudo second order 

kinetic model. 

 

4. In the column study, long-term cyclic operation mode was found to be very effective in 

removing arsenic. 100% removal capacity was achieved when 500 ml of As solution (120 

ppb) was treated. 

 

5. The optical micrographs, of composition PPG:TDI (1:2) and composition PPG:TDI (1:1.75), 

illustrated a significant difference in the cell size. SEM/EDX analysis provided an auxiliary 

technique to investigate the IONPs distribution inside the foam and identify the adsorptive 

arsenic species. The porosity and density of molar composition PPG:TDI (1:2) were found to 

be less than the porosity and density of molar composition PPG:TDI (1:1.75). The open cell 

content of molar composition PPG:TDI (1:2) was found to be less than the open cell content 

of molar composition PPG:TDI (1:1.75). 
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6. The nanocomposite of PU foam is capable of removing As species by both ion exchange and 

adsorption mechanisms. The proposed system of polyurethane nanocomposite adsorbents 

provide low cost solutions to water filtration applications with high versatility and potentials. 

The proposed system will facilitate the post treatment process in the filtration system. The 

pH adjustment will be only needed. The proposed system can be applied to a large-scale 

purification system.  
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